We are given a triangle and we are asked to translate its vertices two units to the right and four units down. To do that we will use the following rule for the transformation:
[tex](x^{\prime},y^{\prime})\rightarrow(x+2,y-4)[/tex]
The coordinates of vertex A is:
[tex]A=(2,-2)[/tex]
Applying the rule we get:
[tex]\begin{gathered} A^{\prime}(2,-2)=(2+2,-2,-4) \\ A^{\prime}(2,-2)=(4,-6) \end{gathered}[/tex]
The coordinates of point B are:
[tex]B=(-2,5)[/tex]
Applying the rule we get:
[tex]\begin{gathered} B^{\prime}(-2,5)=(-2+2,5-4) \\ B^{\prime}(-2,5)=(0,1) \end{gathered}[/tex]
The coordinates of point C:
[tex]C=(-4,2)[/tex]
Applying the rule:
[tex]\begin{gathered} C^{\prime}(-4,2)=(-4+2,2-4) \\ C^{\prime}(-4,2)=(-2,-2) \end{gathered}[/tex]