A 5 cm radius conducting sphere has a charge density of 2.0x10-6 C/m2 on its surface. Find the electric potential of the sphere.7.2x10^6 V1.1x10^4V3.6x10^5 V2.3x10^5 V2.2x10^4 V

Respuesta :

Given that the radius of the conducting sphere is r = 5 cm = 0.05 m

The charge density on the surface of the sphere is

[tex]\sigma\text{ = 2}\times\frac{10^{-6}C}{m^2}[/tex]

We have to find the electric potential.

To calculate electric potential, first, we need to calculate charge.

The charge will be

[tex]\begin{gathered} \sigma=\frac{Q}{4\pi r^2} \\ Q=4\pi r^2\times\sigma \\ =\text{ 4}\times3.14\times(0.05)^2\times2\times10^{-6} \\ =\text{ 6.28}\times10^{-8}\text{ C} \end{gathered}[/tex]

The electric potential is given by the formula

[tex]V=\text{ k}\frac{Q}{r}[/tex]

Here K is Coulomb's constant whose value is

[tex]K=\text{ 8.99 }\times\frac{10^9Nm^2}{C^2}[/tex]

Substituting the values, the electric potential will be

[tex]\begin{gathered} V=\text{ }\frac{8.99\times10^9\times6.28\times10^{-8}}{0.05} \\ =11291.44 \\ =1.1\times10^4\text{ V} \end{gathered}[/tex]