Respuesta :

Given that:

[tex]\Delta DEF\cong\Delta LJK,[/tex]

we get that:

[tex]\begin{gathered} m\angle D=m\angle L, \\ m\angle E=m\angle J, \\ m\angle F=m\angle K. \end{gathered}[/tex]

Now, recall that the interior angles of a triangle add up to 180°, therefore:

[tex]\begin{gathered} m\angle D+m\angle E+m\angle F=180^{\circ}, \\ m\angle D=180^{\circ}-m\angle E-m\angle F. \end{gathered}[/tex]

Substituting:

[tex]\begin{gathered} m\angle F=42^{\circ}, \\ m\angle E=m\angle J=81^{\circ}, \end{gathered}[/tex]

in the previous equation, we get:

[tex]m\angle D=180^{\circ}-42^{\circ}-81^{\circ}=57^{\circ}.[/tex]

Answer:

[tex]m\angle D=57^{\circ}.[/tex]