Let the given number is x
11 more than five times the number, means
Multiply x by 5, then add 11
[tex]5\times x+11=5x+11\rightarrow(1)[/tex]The difference between 144 and twice the number means
Multiply x by 2, then subtract it from 144
[tex]144-2\times x=144-2x\rightarrow(2)[/tex]Now equate the two expressions (1), (2) above
[tex]5x+11=144-2x[/tex]Add 2x to both sides
[tex]\begin{gathered} 5x+2x+11=144-2x+2x \\ 7x+11=144 \end{gathered}[/tex]Subtract 11 from both sides
[tex]\begin{gathered} 7x+11-11=144-11 \\ 7x=133 \end{gathered}[/tex]Divide both sides by 7
[tex]\begin{gathered} \frac{7x}{7}=\frac{133}{7} \\ x=19 \end{gathered}[/tex]The number is 19