Respuesta :

For the ratio test of a series the ratio is defined as:

[tex]r=\lim _{n\to\infty}\lvert\frac{a_{n+1}}{a_n}\rvert[/tex]

And we have three possible outcomes:

- r<1 and the series converges.

- r>1 and the series diverges.

- r=1 and the test is inconclusive.

Knowing this let's apply the test to the series given by the question. We have:

[tex]\begin{gathered} a_n=\frac{2n!}{2^{2n}} \\ a_{n+1}=\frac{2(n+1)!}{2^{2(n+1)}} \end{gathered}[/tex]

As you can see both expressions are always positive so when writing the ratio we don't need to add the absolute value symbols. Then the ratio is:

[tex]\begin{gathered} r=\frac{a_{n+1}}{a_n}=\frac{\frac{2(n+1)!}{2^{2(n+1)}}}{\frac{2n!}{2^{2n}}}=\frac{2(n+1)!}{2^{2(n+1)}}\cdot\frac{2^{2n}}{2n!} \\ r=\frac{2(n+1)!}{2n!}\cdot\frac{2^{2n}}{2^{2n+2}} \end{gathered}[/tex]

Here is important to remember a property of the factorial:

[tex]\begin{gathered} a!=1\cdot2\cdot3\cdot\ldots\cdot(a-1)\cdot a \\ (a+1)!=1\cdot2\cdot3\cdot\ldots\cdot(a-1)\cdot a\cdot(a+1) \\ (a+1)!=a!\cdot(a+1) \end{gathered}[/tex]

And a property of powers:

[tex]b^{a+c}=b^a\cdot b^c[/tex]

Using these properties we get:

[tex]\begin{gathered} r=\frac{2(n+1)!}{2n!}\cdot\frac{2^{2n}}{2^{2n+2}}=\frac{2n!\cdot(n+1)}{2n!}\cdot\frac{2^{2n}}{2^{2n}\cdot2^2} \\ r=\frac{2n!\cdot(n+1)}{2n!}\cdot\frac{2^{2n}}{2^{2n}\cdot2^2}=\frac{2n!}{2n!}\cdot(n+1)\cdot\frac{2^{2n}}{2^{2n}}\cdot\frac{1}{2^2} \\ r=\frac{n+1}{2^2}=\frac{n+1}{4} \\ r=\frac{n+1}{4} \end{gathered}[/tex]

So the answer to part (a) is:

[tex]r=\frac{n+1}{4}[/tex]

For part (b) we have:

The ratio depends on n. As n increases the ratio increases and gets greater than 1:

[tex]\begin{gathered} r>1 \\ \frac{n+1}{4}>1 \\ n+1>4 \\ n>3 \end{gathered}[/tex]

So for any n>3 the ratio is greater than 1 which means that this value of r tells us that the series diverges.