Jimmy bought anew 40 inch television (Remember that a television is measured by its diagonal from the top left corner to the bottom right corner). If the length of Jimmy's television is 8 inches longer than the width, find the width of the television.

Respuesta :

Let's draw the given scenario to better understand the problem:

Let,

W = Width

L = Length

For us to be able to get the width of the television, we will be using the Pythagorean Theorem:

[tex]\text{ a}^2+b^2=c^2[/tex]

But,

a = Width = W

b = Width + 8 inches = W + 8

c = 40 inches = 40

We get,

[tex]\text{ a}^2+b^2=c^2[/tex][tex]\text{ (W)}^2+(W+8)^2=(40)^2[/tex][tex]\text{ W}^2+W^2\text{ + 16W + 64 = 1,600}[/tex][tex]2W^2\text{ + 16W + 64 - 1600 = 0}[/tex][tex]2W^2\text{ + 16W - 1,536 = 0}[/tex][tex]\frac{2W^2\text{ + 16W - 1,536}}{2}\text{ = 0}[/tex][tex]W^2\text{ + 8W - 768 = 0}[/tex]

a = 1, b = 8 and c = -768

Using the quadratic formula,

[tex]\text{ W = x = }\frac{\text{ -b }\pm\text{ }\sqrt[]{b^2\text{ - 4ac}}}{2a}\text{ = }\frac{-8\text{ }\pm\text{ }\sqrt[]{(8)^2\text{ - 4(1)(-768)}}}{2(1)}[/tex][tex]\text{ x = }\frac{-8\text{ }\pm\text{ }\sqrt[]{64\text{ + }3,072}}{2}\text{ = }\frac{-8\text{ }\pm\text{ 56}}{2}\text{ = -4 }\pm\text{ 28}[/tex][tex]\text{ x}_1\text{ = -4 + 28 = 24 inches}[/tex][tex]\text{ x}_2\text{ = -4 - 28 = -32 inches}[/tex]

A width should never be a negative value, therefore, the most probable width of the television is 24 inches.

Therefore, the answer is 24 inches.

Ver imagen EvlynnN321671