We are given that one of the endpoints of the line segment is: (x + 2, 14 y)
And that the midpoint of the line segment is: (6,−3)
We can consider using the midpoint formula:
[tex]M=\frac{x_1+x_2}{2},\frac{y_1+y_2}{2}[/tex]Substituting:
[tex]\begin{gathered} 6=\frac{(x+2)+x_2}{2} \\ \\ -3=\frac{14y+y_2}{2} \end{gathered}[/tex]Solving for x₂ and y₂:
[tex]\begin{gathered} 12=x+2+x_2 \\ x_2=10-x \\ \\ -6=14y+y_2 \\ y_2=-14y-6 \end{gathered}[/tex]ANSWER
the other coordinate expressed in terms of x and y is: (10 - x, - 14y - 6)