FIND THE FORMULA FOR THE EXPONENTIAL GRAPHThe figure shows the graph of an exponential function. The dots on the graph are points with integer coordinates.The function graphed is P(t)Hint: The function may be written as P(t) = Pa^t

FIND THE FORMULA FOR THE EXPONENTIAL GRAPHThe figure shows the graph of an exponential function The dots on the graph are points with integer coordinatesThe fun class=

Respuesta :

Based on the graph,

At,

f(2) = 1 (1)

f(9) = 6 (2)

[tex]\text{ f(x) = ab}^{\text{x}}[/tex]

At f(2) = 1,

[tex]\text{ 1 = ab}^2[/tex][tex]\text{ a = }\frac{\text{ 1}}{b^2}[/tex]

At f(9) = 6 ,

[tex]\text{ 6 = ab}^9[/tex][tex]\text{ a = }\frac{\text{ 6}}{b^9}[/tex]

Equate them to find b, a = a,

[tex]\text{ }\frac{\text{ 1}}{b^2}\text{ = }\frac{\text{ 6}}{b^9}\text{ }\rightarrow\text{ }\frac{b^9}{b^2}\text{ = }\frac{6}{1}[/tex][tex]\text{ b}^7\text{ = 6}[/tex][tex]\text{ b = }\sqrt[7]{6}[/tex]

Let's find a at f(2) = 1 and the seventh root of 6,

[tex]\text{ f(x) = ab}^{\text{x}}[/tex][tex]\text{ 1 = a(}\sqrt[7]{6})^2[/tex][tex]\text{ a = }\frac{\text{ 1}}{\sqrt[7]{36}}[/tex]

Let's now complete the equation.

[tex]\text{ f(x) = ab}^{\text{x}}[/tex]

[tex]\text{ f(x) =}\frac{1}{\sqrt[7]{36}}\text{ x (}\sqrt[7]{6})^x=\frac{\text{(}\sqrt[7]{6})^x}{\sqrt[7]{36}}[/tex][tex]\text{ f(x) }=\frac{\text{(}\sqrt[7]{6})^x}{\sqrt[7]{36}}[/tex]