a. Find the number of fruit flies which were initially placed in the container.
Evaluate the function for t = 0
[tex]\begin{gathered} t=0 \\ P(0)=12\times3^{0.498(0)} \\ P(0)=12\times3^0 \\ P(0)=12\times1 \\ P(0)=12 \end{gathered}[/tex]-----------------------------
b. Evaluate the function for t = 6
[tex]\begin{gathered} t=6 \\ P(6)=12\times3^{0.498(6)} \\ P(6)=12\times3^{2.988} \\ P(6)=319.7566278 \\ P(6)\approx320 \end{gathered}[/tex]------------------------------------------------
c.
Evaluate the function for P(t) = 8000
[tex]\begin{gathered} P(t)=8000 \\ 8000=12\times3^{0.498t} \\ solve_{\text{ }}for_{\text{ }}t\colon \\ \frac{8000}{12}=3^{0.498t} \\ \ln (\frac{8000}{12})=0.498t\ln (3) \\ t=\frac{\ln (\frac{8000}{12})}{0.498\ln (3)} \\ t=11.88481843 \\ t\approx12 \end{gathered}[/tex]-----------------------------------
d.
Let's find the limit for t->-∞ :
[tex]\begin{gathered} \lim _{t\to\infty}P(t)=p=4\cdot3^{0.498(-\infty)}=0=p \\ \end{gathered}[/tex][tex]p=0[/tex]