Presuming that the lines l, m and n are parallel and intersecting a single line, the angles measuring 132° and (x + 13)° appears to be a pair of Alternate Interior Angles.
Under this relationship, the two angles must be congruent.
Therefore,
[tex]\text{ (x + 13)}^{\circ}=132^{\circ}[/tex]Let's determine the value of x,
[tex]\text{ (x + 13)}^{\circ}=132^{\circ}[/tex][tex]x^{\circ}\text{ + 13}^{\circ}=132^{\circ}[/tex][tex]x^{\circ}\text{ }=132^{\circ}\text{ - 13}^{\circ}[/tex][tex]x^{}\text{ }=119^{\circ}[/tex]Therefore, x = 119°