Respuesta :

The area of the border is equal to

[tex]A=(32+2x)(20+2x)-(32)(20)[/tex]

Expand the equation

[tex]\begin{gathered} A=640+64x+40x+4x^2-640 \\ A=4x^2+104x \end{gathered}[/tex]

Remember that the area of the border is given

A=224 ft2

substitute and solve the quadratic equation

[tex]\begin{gathered} 4x^2+104x=224 \\ 4x^2+104x-224=0 \end{gathered}[/tex]

using the formula

a=4

b=104

c=-224

substitute

[tex]x=\frac{-104\pm\sqrt{104^2-4(4)(-224)}}{2(4)}[/tex][tex]x=\frac{-104\pm120}{8}[/tex]

The values of x are

x=2 ft and x=-28 ft ( is not a solution because is a negative number)

therefore

The answer is 2 ft