Respuesta :

Answer:

y = (10/7)x - 16/7

Explanation:

The equation of a line that passes through two points (x1, y1) and (x2, y2) is

[tex]\begin{gathered} y-y_1=m(x-x_1) \\ \\ \text{ Where} \\ m=\frac{y_2-y_1}{x_2-x_1} \end{gathered}[/tex]

So, replacing (x1, y1) = (3, 2) and (x2, y2) = (-4, -8), we get:

[tex]m=\frac{-8-2}{-4-3}=\frac{-10}{-7}=\frac{10}{7}[/tex][tex]y-2=\frac{10}{7}(x-3)[/tex]

Finally, we can solve the equation for y

[tex]\begin{gathered} y-2=\frac{10}{7}x-\frac{10}{7}(3) \\ \\ y-2=\frac{10}{7}x-\frac{30}{7} \\ \\ y=\frac{10}{7}x-\frac{30}{7}+2 \\ \\ y=\frac{10}{7}x-\frac{16}{7} \end{gathered}[/tex]

Therefore, the answer is

y = (10/7)x - 16/7