Respuesta :

[tex]x^2-10x=13\rightarrow x^2-10x-13=0[/tex][tex](x+a)^2=\text{ (x+a)}\cdot(x+a)=x(x+a)+a(x+a)=x^2+ax+ax+a^2=x^2+2ax+a^2[/tex]

We need to adjust our equation in such way, that it follows the square pattern.

[tex]2a=-10\rightarrow a\text{ = -5, }[/tex]

This also says that the last term should be 25, so by adding 38 on both sides , we get following.

[tex]x^2-10x=13\rightarrow x^2-10x+25=38[/tex][tex](x-5)^2=38\rightarrow x\text{ = }\sqrt[]{38}+5[/tex]