Respuesta :

The formula to calculate the midpoint between two points is,

[tex]\lparen x_m,y_m)=\lparen\frac{x_1+x_2}{2},\frac{y_1+y_2}{2})[/tex]

Checking the last option for confirmation

The coordinates are (10, 0) and (6, 6)

Where,

[tex]\begin{gathered} \lparen x_1,y_1)=\left(10,0\right) \\ \lparen x_2,y_2)=\left(6,6\right) \end{gathered}[/tex]

Therefore,

[tex]\begin{gathered} \lparen x_m,y_m)=\lparen\frac{10+6}{2},\frac{0+6}{2})=\left(\frac{16}{2},\frac{6}{2}\right)=\left(8,3\right) \\ \therefore\lparen x_m,y_m)=(8,3) \end{gathered}[/tex]

Hence, from the result above we can conclude that the coordinates with the pair (8,3) are (10, 0) and (6, 6).

Therefore, the answer is (10, 0) and (6, 6).