ANSWER :
The polar coordinates of point P are :
[tex]\begin{gathered} (2,14^{\circ}+360n)\quad and\quad(-2,14^{\circ}+180(2n+1)) \\ \text{ where n is any integer} \end{gathered}[/tex]EXPLANATION :
Note that :
[tex]\begin{gathered} \text{ The polar coordinate }(r,\theta)\text{ can be written as :} \\ (r,\theta)\rightarrow(r,\theta+360n) \\ or \\ (-r,\theta)\rightarrow(r,\theta+180(2n+1)) \end{gathered}[/tex]For the positive value of r, the polar coordinate can be written as :
[tex]\begin{gathered} P=(2,14^{\circ})=(2,14^{\circ}+360n) \\ \text{ where n is any integer} \end{gathered}[/tex]For the negative value of r, the polar coordinate can be written as :
[tex]\begin{gathered} P=(-2,14^{\circ})=(-2,14^{\circ}+180(2n+1)) \\ \text{ where n is any integer} \end{gathered}[/tex]