х Which graph represents the function f(x) = 2 · 4+? 2

Given the function
[tex]f(x)=2\cdot4^x[/tex]Where the range of values of x is -2 to 2
[tex]\begin{gathered} f(x)=2\cdot4^x \\ \text{Where x = -2} \\ f(-2)=2\cdot4^{-2}=\frac{2}{4^2}=\frac{2}{16}=0.125 \\ \text{Where x = -1} \\ f(-1)=2\cdot4^{-1}=\frac{2}{4^1}=\frac{2}{4}=0.5 \\ \text{Where x = 0} \\ f(0)=2\cdot4^0=2\times1=\frac{2}{1}=2 \\ \text{Where x = 1} \\ f(1)=2\cdot4^1=2\times4=8 \\ \text{Where x = 2} \\ f(2)=2\cdot4^2=2\times16=32 \end{gathered}[/tex]Using the graphing calculator, the graph of the function is shown below
From the graph above,
The graph that represents the given function is the first graph by the left.