Respuesta :

Solution:

Given the system of equations;

[tex]\begin{gathered} 4x+7y=4........equation1 \\ \\ 4x-7y=4...........equation2 \end{gathered}[/tex]

Using addition method, add equation 1 and equation 2;

[tex]\begin{gathered} 4x+4x+7y-7y=4+4 \\ \\ 8x=8 \\ \\ x=\frac{8}{8} \\ \\ x=1 \end{gathered}[/tex]

Substitute the value of x in equation1;

[tex]\begin{gathered} 4x+7y=4;x=1 \\ \\ 4(1)+7y=4 \\ \\ 4+7y=4 \\ \\ 7y=4-4 \\ \\ 7y=0 \\ \\ y=\frac{0}{7} \\ \\ y=0 \end{gathered}[/tex]

The ordered pair (x,y), of the solution, is;

[tex](x,y)=(1,0)[/tex]