Answer:
[tex]\mleft(t^2+4\mright)\mleft(t^2-4\mright)[/tex]Explanation:
We were given:
[tex]t^4-16[/tex]We will proceed to factor it as shown below:
[tex]\begin{gathered} t^4-16 \\ Using\text{ the formula for difference of two squares}\colon a^2-b^2=\mleft(a+b\mright)\mleft(a-b\mright) \\ t^4-16\Rightarrow(t^2)^2-4^2 \\ (t^2)^2-4^2\Rightarrow(t^2+4)\mleft(t^2-4\mright) \\ (t^2+4)(t^2-4) \\ \\ \therefore(t^2+4)(t^2-4) \end{gathered}[/tex]Hence, a. is the correct answer