Which equation is the slope-intercept form of the line that passes through (6, –11) and is parallel to the graph of y = –2/3x + 12?A.y = –2/3x – 7B.y = –2/3x – 6C.y = 2/3x – 5D.y = 2/3x – 15

Respuesta :

For Parallelism condition; the slope are equal, i.e;

[tex]M_1=M_2[/tex]

From the given straight line equation:

[tex]\begin{gathered} y=-\frac{2}{3}x+12 \\ M_1=-\frac{2}{3} \end{gathered}[/tex][tex]\begin{gathered} \text{For Parallel lines:} \\ M_1=M_2 \\ \text{Thus, M}_2=-\frac{2}{3} \end{gathered}[/tex]

From the given point (6, - 11);

[tex]x_1=6;y_1=-11[/tex]

Since we have the given points and know the value of the slope, thus we have:

[tex]\begin{gathered} M_2=\frac{y-y_1}{x-x_1} \\ -\frac{2}{3}=\frac{y-(-11)}{x-6} \\ -\frac{2}{3}=\frac{y+11}{x-6} \\ \text{cross}-\text{multiply} \\ 3(y+11)=-2(x-6) \\ 3y+33=-2x+12 \\ 3y=-2x+12-33 \\ 3y=-2x-21 \\ \frac{3y}{3}=-\frac{2x}{3}-\frac{21}{3} \\ y=-\frac{2}{3}x-7 \end{gathered}[/tex]

Hence, the correct option is A

Otras preguntas