Assuming the pattern continues, what is S12( sum of all terms leading uup to 12) for the series−8 − 15 − 22 − 29 − …? −565 −85 −510 −558

Respuesta :

-558

Explanation

The arithmetic sequence formula is given as

[tex]\begin{gathered} a_n=a_1+(n-1)d \\ \text{where} \\ a_1\text{ is the first term} \\ d\text{ is the common difference} \end{gathered}[/tex]

Step 1

a)

Let

[tex]\begin{gathered} a_1=-8 \\ a_2=-15 \\ a_3=-22 \\ a_4=-29 \end{gathered}[/tex]

b) find the common difference

[tex]\begin{gathered} a_2-a_1=-15-(-8)=-15+8=-7 \\ a_3-a_2=-22-(-15)=-22+15=-7 \\ a_4-a_3=-29-(-22)=-29+22+8=-7 \end{gathered}[/tex]

so, the common diference is -7

c) now replace in the original formula

[tex]\begin{gathered} a_n=a_1+(n-1)d \\ a_n=-8_{}+(n-1)(-7) \end{gathered}[/tex]

therefore, the serie is

[tex]a_n=-8_{}+(n-1)(-7)[/tex]

Step 2

now, to find the sum, we need to apply the formula

[tex]S=\frac{n(a_1+a_n)}{2}[/tex]

so

a) find an

n=12

[tex]\begin{gathered} a_n=-8_{}+(n-1)(-7) \\ a_{12}=-8_{}+(12-1)(-7)=-8-77=-85 \end{gathered}[/tex]

now, replace in the formula

[tex]\begin{gathered} S=\frac{12(-8_{}-85)}{2} \\ S=\frac{12(-93)}{2} \\ S=\frac{-1116}{2} \\ s=-558 \end{gathered}[/tex]

therefore, the answer is

-558

I hope this helps you