The expected value formula would come in handy, it is
[tex]Expected-value=\Sigma\text{ xP(x)}[/tex]Step 1
Total number of committee = 4 + 2 + 1 +3 = 10
Step 2
probality of picking of (26) = 4/10
probality of picking of (44) = 2/10
probality of picking of (93) = 1/10
probality of picking of (96) = 3/10
[tex]\begin{gathered} \text{Expected Value = }\frac{4}{10}\times26\text{ + }\frac{2}{10}\times\text{ 44 + }\frac{1}{10}\times93\text{ + }\frac{3}{10}\times\text{ 96 } \\ \text{ = }\frac{104}{10}\text{ +}\frac{88}{10}\text{ + }\frac{93}{10}\text{ + }\frac{288}{10} \\ \text{ = 10.4 + 8.8 + 9.3 + 28.8} \\ \text{ = 57.3} \end{gathered}[/tex]
Therefore expected value = 57.3