Respuesta :

From the fundamental identities, we know that

[tex]csc\varphi=\frac{1}{sin\varphi}[/tex]

By substituting this result into the given expression, we have

[tex]9sin\varphi(\frac{1}{sin\varphi}-sin\varphi)[/tex]

Now, by distributing sine of phi into the parentheses, we have

[tex]9(\frac{sin\varphi}{sin\varphi}-sin^2\varphi)[/tex]

or equivalently,

[tex]9(1-sin^2\varphi)[/tex]

Now, from the Pythagorean identity:

[tex]cos^2\varphi+sin^2\varphi=1[/tex]

we can note that

[tex]cos^2\varphi=1-sin^2\varphi[/tex]

Then, by substituting this result into our last result from above, we obtain

[tex]9(1-sin^2\varphi)=9cos^2\varphi[/tex]

Therefore, the answer is:

[tex]9cos^2\varphi[/tex]