For the functions f(x)=x/x-3 and g(x)=13/xFind the composition f • x and simplify your answer as much as possible.Write the domain using interval (F•g)(x)=Domain of f•g:

Problem statement
[tex]\begin{gathered} f(x)=\frac{x}{x-3\text{ }} \\ \text{and } \\ g(x)=\frac{13}{x} \end{gathered}[/tex]Part A
Solution
[tex](f.g)(x)=\frac{\frac{13}{x}}{\frac{13}{x}-3}[/tex]We can now simplify
[tex]\begin{gathered} (f.g)(x)=\frac{\frac{13}{x}}{\frac{13}{x}-\frac{3}{1}} \\ \\ (f.g)(x)=\frac{\frac{13}{x}}{\frac{13-3x}{x}} \\ \text{simplifying} \\ (f.g)(x)=\frac{13}{x}\times\frac{x}{13-3x} \end{gathered}[/tex][tex]\begin{gathered} (f.g)(x)=\frac{13}{x}\times\frac{x}{13-3x} \\ x\text{ can divide x we have} \\ \\ (f.g)(x)=\frac{13}{13-3x} \end{gathered}[/tex]Part B
The Domain
[tex]\begin{gathered} \text{Let set 13-3x=0} \\ 13=3x \\ x=\frac{13}{3} \end{gathered}[/tex]The domain is
[tex](-\infty,\frac{13}{3})\text{ U (}\frac{13}{3},\infty)[/tex]