Dilate the figure by the scale factor. Then enterthe new coordinates.A(0,2)K=10A'([?],[])1013.2 B'([][])C'([],[)B(,-2)C(-1,-4)

A dilation is a transformation that produces an image that is the same shape as the original, but is a different size.
The coordinates of the points A, B, and C given in the question are:
[tex]\begin{gathered} A=0,2 \\ B=3,-2 \\ C=-1,-4 \end{gathered}[/tex]If an object with coordinates A (x,y) is dilated by a scale factor of k, the transformation will be
[tex]A(x,y)\Rightarrow A^{\prime}(k\times x,k\times y)[/tex]Applying this rule,
we have the values of
K=10
A=(0,2)
B=(3,-2)
C=(-1,-4)
Then
[tex]\begin{gathered} A^{\prime}=(0\times10,2\times10)=(0,20) \\ A^{\prime}=(0,20) \end{gathered}[/tex]Similarly, to get B'
[tex]\begin{gathered} B^{\prime}=(3\times10,-2\times10) \\ B^{\prime}=(30,-20) \end{gathered}[/tex]Finally to get C'
[tex]\begin{gathered} C^{\prime}=(-1\times10,-4\times10) \\ C^{\prime}=(-10,-40) \end{gathered}[/tex]Finally