Respuesta :

[tex]40v^6u^{13}[/tex]

Explanation

let's remember how to multiply terms with variables and exponents

let

a, b, c,m, n ,o and p integers

x and y variables, so

[tex]\begin{gathered} ax^m\cdot bx^n=(a\cdot b)x^{m+n} \\ \text{also} \\ ax^my^n\cdot bx^oy^p=(a\cdot b)x^{m+o}y^{n+p} \end{gathered}[/tex]

Step 1

hence, do the operation usign the properties

[tex]\begin{gathered} 4v^5u^7\cdot2v\cdot5u^6 \\ 4v^5u^7\cdot2v\cdot5u^6=(4\cdot2\cdot5)v^{5+1}u^{7+6} \\ 4v^5u^7\cdot2v\cdot5u^6=(40)v^6u^{13} \\ 4v^5u^7\cdot2v\cdot5u^6=40v^6u^{13} \end{gathered}[/tex]

therefore, the answer is

[tex]40v^6u^{13}[/tex]

i hope this helps yo