Respuesta :

Answer: x=4

For any given equation of a parabola,

[tex](y-k)^2=4p(x-h)[/tex]

The directrix is found at x = h-p

From the given equation,

[tex](y-7)^2=-4(x-3)[/tex]

We know that 4p=-4. With this, we solve for p:

[tex]\begin{gathered} 4p=-4 \\ p=-\frac{4}{4} \\ p=-1 \end{gathered}[/tex]

The directrix would then be:

[tex]\begin{gathered} x=h-p \\ x=3-(-1) \\ x=3+1 \\ x=4 \end{gathered}[/tex]