What single trigonometric function does the expression the quantity cosine squared theta plus sine squared theta end quantity over the quantity 1 plus tangent squared theta simplify to?

What single trigonometric function does the expression the quantity cosine squared theta plus sine squared theta end quantity over the quantity 1 plus tangent s class=

Respuesta :

Given

[tex]\frac{\cos ^2\theta+\sin ^2\theta}{1+\tan ^2\theta}[/tex]

To simplify this expression, you have to use trigonometric identities.

The numerator of the expression corresponds to one of the Pythagorean identities which is:

[tex]\cos ^2\theta+\sin ^2\theta=1[/tex]

You can write the expression as follows:

[tex]\begin{gathered} \frac{\cos ^2\theta+\sin ^2\theta}{1+\tan ^2\theta} \\ \frac{1}{1+\tan ^2\theta} \end{gathered}[/tex]

The denominator of the expression corresponds to another trigonometric identity which is:

[tex]\sec ^2\theta=1+\tan ^2\theta[/tex]

Now you can write the expression as follows:

[tex]\begin{gathered} \frac{1}{1+\tan ^2\theta} \\ \frac{1}{\sec ^2\theta} \end{gathered}[/tex]

The inverse of the secant is equal to the cosine so that:

[tex]\frac{1}{\sec^2\theta}=\cos ^2\theta[/tex]

The answer is

[tex]\cos ^2\theta[/tex]