Respuesta :

Given the figure below

[tex]\sqrt[]{10}[/tex]

Let n be the number,

Additive inverse formula is

[tex]n+(-n)=0[/tex]

The additive inverse of the number is

[tex]\begin{gathered} -\sqrt[]{10} \\ i.e\text{ }\sqrt[]{10}+(-\sqrt[]{10})=\sqrt[]{10}-\sqrt[]{10}=0 \end{gathered}[/tex]

Hence, the additive inverse is

[tex]-\sqrt[]{10}[/tex]

Multiplicative inverse of n is

[tex]n\times\frac{1}{n}=1[/tex]

The multiplicative inverse of the number is

[tex]\begin{gathered} \frac{1}{\sqrt[]{10}} \\ i\mathrm{}e\text{ }\sqrt[]{10}\times\frac{1}{\sqrt[]{10}}=1 \end{gathered}[/tex]

Hence, the multiplicative inverse is

[tex]\frac{1}{\sqrt[]{10}}[/tex]