Given the figure below
[tex]\sqrt[]{10}[/tex]Let n be the number,
Additive inverse formula is
[tex]n+(-n)=0[/tex]The additive inverse of the number is
[tex]\begin{gathered} -\sqrt[]{10} \\ i.e\text{ }\sqrt[]{10}+(-\sqrt[]{10})=\sqrt[]{10}-\sqrt[]{10}=0 \end{gathered}[/tex]Hence, the additive inverse is
[tex]-\sqrt[]{10}[/tex]Multiplicative inverse of n is
[tex]n\times\frac{1}{n}=1[/tex]The multiplicative inverse of the number is
[tex]\begin{gathered} \frac{1}{\sqrt[]{10}} \\ i\mathrm{}e\text{ }\sqrt[]{10}\times\frac{1}{\sqrt[]{10}}=1 \end{gathered}[/tex]Hence, the multiplicative inverse is
[tex]\frac{1}{\sqrt[]{10}}[/tex]