Given:
Total solution = 30 ml
The final solution ratio is 1 part syrup to 6 parts soda.
50% syrup solution.
1:200 soda solution.
Find-: How many soda solutions need to create the final sol.
Sol:
Let x = Number of liter of the 50% syrup solution.
y = Number of a liter of the 1 parts syrup to 200 parts soda solution.
So,
[tex]x+y=30[/tex]1:200 soda solution and 50% syrup.
[tex]\frac{1}{2}x+\frac{1}{201}y=\frac{1}{7}\times30[/tex]Solve for "x" and "y" the put
[tex]y=30-x[/tex][tex]\begin{gathered} \frac{1}{2}x+\frac{1}{201}(30-x)=\frac{1}{7}\times30 \\ \\ x=8.356 \end{gathered}[/tex]Then the value of "y" is:
[tex]\begin{gathered} y=30-x \\ \\ y=21.644 \end{gathered}[/tex]Final sol. will be 30 ml total,
It will contain 8.356 ml of 50% syrup solution.
it will contain 21.644 ml of 1 part syrup to 200 parts soda solution
For the total amount of syrup in the final solution.
[tex]\begin{gathered} \frac{1}{2}(8.356)+\frac{1}{201}(21.644) \\ \\ =4.286 \end{gathered}[/tex]4.286 ml of pure syrup