The weighted total is obtained by multiplying the data value by its corresponding frequency,
[tex]w_i=x_i\cdot f_i[/tex]Solve for the weighted total for each data point as,
[tex]\begin{gathered} w_0=0\times5=0 \\ w_1=1\times9=9 \\ w_2=2\times7=14 \\ w_3=3\times4=12 \\ w_4=4\times3=12 \\ w_5=5\times2=10 \end{gathered}[/tex]The mean of the data is calculated as,
[tex]\begin{gathered} \text{Mean}=\frac{\sum ^5_{i\mathop=0}x_if_i}{\sum ^5_{i\mathop{=}0}x_{}f_i} \\ \text{Mean}=\frac{0+9+14+12+12+10}{5+9+7+4+3+2} \\ \text{Mean}=\frac{57}{30} \\ \text{Mean}=1.9 \end{gathered}[/tex]Thus, the mean number of cups of coffee drank yesterday is