Given the following quadratic equation:
[tex]-x^2-6x+8=0[/tex]
To solve the equation, we will use the quadratic rule or make a complete square of the given expression
We will use the quadratic rule:
[tex]x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}[/tex]
As shown, a = -1, b = -6, c = 8
Substitute a, b, and c
[tex]\begin{gathered} x=\frac{-(-6)\pm\sqrt{(-6)^2-4(-1)(8)}}{2(-1)} \\ \\ x=\frac{6\pm\sqrt{68}}{-2} \\ \\ x=\frac{6-\sqrt{68}}{-2}\approx-7.123 \\ \\ or,x=\frac{6+\sqrt{68}}{-2}=1.123 \end{gathered}[/tex]
So, the answer will be: x = {-7.123, 1.123}