Answer:
[tex](x+5)^2=64[/tex]Step by step explanation:
Completing the square is where we take a quadratic equation like this:
[tex]\begin{gathered} ax^2+bx+c=0\text{ } \\ \text{ and turn it into this form:} \\ a(x+d)^2+e=0 \end{gathered}[/tex]Where d and e can be represented by these expressions:
[tex]\begin{gathered} d=\frac{b}{2a} \\ e=c-\frac{b^2}{4a} \end{gathered}[/tex]Now, we have the following equation:
[tex]x^2+10x-39=0[/tex]Then, a=1, b=10 and c=-39
Find d and e:
[tex]\begin{gathered} d=\frac{10}{2}=5 \\ e=-39-\frac{10^2}{4}=-64 \end{gathered}[/tex]So, the equation completing the square would be:
[tex](x+5)^2-64=0[/tex]Turning it into the form (x+a)^2=b.
[tex](x+5)^2=64[/tex]