Respuesta :

From the unit circle:

we can see that angle

[tex]\frac{3\pi}{4}=135\text{ degre}es[/tex]

so this angle is in the quadrant II.

The second angle

[tex]\frac{57\pi}{8}=1282.5\text{ degre}es[/tex]

which is equivalent to

[tex]202.5\text{ degre}es[/tex]

which is on quadrant III.

The next angle is

[tex]\begin{gathered} \frac{13\pi}{6}=390\text{ degre}es \\ or\text{ equivalently} \\ 30\text{ degr}ees \end{gathered}[/tex]

which is on quadrant I.

The next angle is

[tex]-\frac{35\pi}{6}=-1050\text{ degre}es[/tex]

which is equivalent to

[tex]-330\text{ degre}es=30\text{ degre}es[/tex]

which is on quadrant I.

The next angle is

[tex]-\frac{5\pi}{6}=-150\text{ degre}es[/tex]

which is on quadrant III.

And finally, the angle

[tex]-\frac{5\pi}{11}=-81.81\text{ degre}es[/tex]

which is on quadrant IV

In summary, the answers are:

Quadrant I:

[tex]\frac{13\pi}{6},-\frac{35\pi}{6},[/tex]

Quadrant II:

[tex]\frac{3\pi}{4}[/tex]

Quadrant III:

[tex]\frac{57\pi}{8},-\frac{5\pi}{6}[/tex]

Quadrant IV:

[tex]-\frac{5\pi}{11}[/tex]

Ver imagen MadalynnO335600