Explanation
When light travels from one medium to another, it generally bends, or refracts, refraction also involves the angles that the incident ray and the refracted ray make with the normal to the surface at the point of refraction Snell's law asserts that
[tex]n_1\sin\theta_1=n_2sin\theta_2[/tex]where
Step 1
given
[tex]\begin{gathered} n_1=1.515 \\ \theta_1=43.9\text{ \degree} \\ n_2=1.523 \\ \theta_2=unknown \end{gathered}[/tex]now, replace in the formula and solve for the angle
[tex]\begin{gathered} n_1\sin(\theta_1)=n_2s\imaginaryI n\theta_2 \\ 1.515*\sin43.9=1.523sin\theta_2 \\ hence \\ \theta_2=\sin^{-1}(\frac{1.515*\sin43.9}{1.523}) \\ \theta_2=43.61 \end{gathered}[/tex]therefore, the angle 43.61