Respuesta :

Given:

[tex]\frac{6+4\cdot1-2}{-5(4-1\div(7+5))}[/tex]

Required:

We need to evaluate the given expression.

Explanation:

Use the BODMAS rule.

Solve the bracket.

[tex]\frac{6+4\cdot1-2}{-5(4-1\div(7+5))}=\frac{6+4\cdot1-2}{-5(4-1\div12)}[/tex]

Divide 1 by 12.

[tex]\frac{6+4\cdot1-2}{-5(4-1\div(7+5))}=\frac{6+4\cdot1-2}{-5(4-\frac{1}{12})}[/tex]

Multiply 4 and 1 gives 4.

[tex]\frac{6+4\cdot1-2}{-5(4-1\div(7+5))}=\frac{6+4-2}{-5(4-\frac{1}{12})}[/tex]

Add 6 and 4 gives 10.

[tex]\frac{6+4\cdot1-2}{-5(4-1\div(7+5))}=\frac{10-2}{-5(4-\frac{1}{12})}[/tex]

Subtract 2 from 10 given 8.

[tex]\frac{6+4\cdot1-2}{-5(4-1\div(7+5))}=\frac{8}{-5(4-\frac{1}{12})}[/tex][tex]\frac{6+4\cdot1-2}{-5(4-1\div(7+5))}=\frac{8}{-5(4\times\frac{12}{12}-\frac{1}{12})}[/tex][tex]\frac{6+4\cdot1-2}{-5(4-1\div(7+5))}=\frac{8}{-5(\frac{48-1}{12})}[/tex][tex]\frac{6+4\cdot1-2}{-5(4-1\div(7+5))}=\frac{8}{-5(\frac{47}{12})}[/tex][tex]\frac{6+4\cdot1-2}{-5(4-1\div(7+5))}=\frac{8}{-(\frac{235}{12})}[/tex]

Multiply the numerator by the reciprocal of the denominator to divide the rational numbers.

[tex]\frac{6+4\cdot1-2}{-5(4-1\div(7+5))}=8\times\frac{-12}{235}[/tex][tex]\frac{6+4\cdot1-2}{-5(4-1\div(7+5))}=\frac{-96}{235}[/tex]

Final answer:

[tex]\frac{6+4\cdot1-2}{-5(4-1\div(7+5))}=\frac{-96}{235}[/tex]