Evaluate the following expressions expressing your answer in fraction form if needed be sure to use the correct order of operations

Given:
[tex]\frac{6+4\cdot1-2}{-5(4-1\div(7+5))}[/tex]Required:
We need to evaluate the given expression.
Explanation:
Use the BODMAS rule.
Solve the bracket.
[tex]\frac{6+4\cdot1-2}{-5(4-1\div(7+5))}=\frac{6+4\cdot1-2}{-5(4-1\div12)}[/tex]Divide 1 by 12.
[tex]\frac{6+4\cdot1-2}{-5(4-1\div(7+5))}=\frac{6+4\cdot1-2}{-5(4-\frac{1}{12})}[/tex]Multiply 4 and 1 gives 4.
[tex]\frac{6+4\cdot1-2}{-5(4-1\div(7+5))}=\frac{6+4-2}{-5(4-\frac{1}{12})}[/tex]Add 6 and 4 gives 10.
[tex]\frac{6+4\cdot1-2}{-5(4-1\div(7+5))}=\frac{10-2}{-5(4-\frac{1}{12})}[/tex]Subtract 2 from 10 given 8.
[tex]\frac{6+4\cdot1-2}{-5(4-1\div(7+5))}=\frac{8}{-5(4-\frac{1}{12})}[/tex][tex]\frac{6+4\cdot1-2}{-5(4-1\div(7+5))}=\frac{8}{-5(4\times\frac{12}{12}-\frac{1}{12})}[/tex][tex]\frac{6+4\cdot1-2}{-5(4-1\div(7+5))}=\frac{8}{-5(\frac{48-1}{12})}[/tex][tex]\frac{6+4\cdot1-2}{-5(4-1\div(7+5))}=\frac{8}{-5(\frac{47}{12})}[/tex][tex]\frac{6+4\cdot1-2}{-5(4-1\div(7+5))}=\frac{8}{-(\frac{235}{12})}[/tex]Multiply the numerator by the reciprocal of the denominator to divide the rational numbers.
[tex]\frac{6+4\cdot1-2}{-5(4-1\div(7+5))}=8\times\frac{-12}{235}[/tex][tex]\frac{6+4\cdot1-2}{-5(4-1\div(7+5))}=\frac{-96}{235}[/tex]Final answer:
[tex]\frac{6+4\cdot1-2}{-5(4-1\div(7+5))}=\frac{-96}{235}[/tex]