Identify the equations that are parallel. select all that apply.

We know that two lines are parallel if they have the same slope.
Then, we can write the given equations of the lines in their slope-intercept form.
[tex]\begin{gathered} y=mx+b \\ \text{ Where} \\ \text{ m is the slope} \\ b\text{ is the y-intercept} \end{gathered}[/tex]Then, we solve for y each equation:
• First equation
[tex]\begin{gathered} 6y-x=14 \\ \text{ Add x from both sides} \\ 6y-x+x=14+x \\ 6y=14+x \\ \text{ Divide by 14 from both sides} \\ \frac{6y}{6}=\frac{14+x}{6} \\ y=\frac{14}{6}+\frac{1}{6}x \\ \text{ Simplify} \\ y=\frac{7\cdot2}{3\cdot2}+\frac{1}{6}x \\ y=\frac{7}{6}+\frac{1}{6}x \\ \text{ Reorder} \\ y=\frac{1}{6}x+\frac{7}{6} \end{gathered}[/tex]• Second equation
[tex]\begin{gathered} -4y+2x=1 \\ \text{ Subtract 2x from both sides} \\ -4y+2x-2x=1-2x \\ -4y=1-2x \\ \text{ Divide by -4 from both sides} \\ \frac{-4y}{-4}=\frac{1-2x}{-4} \\ y=-\frac{1}{4}+\frac{2x}{4} \\ y=-\frac{1}{4}+\frac{1}{2}x \\ \text{ Reorder} \\ y=\frac{1}{2}x-\frac{1}{4} \end{gathered}[/tex]• Third equation
[tex]\begin{gathered} 2y-\frac{1}{3}x=12 \\ \text{ Add }\frac{1}{3}x\text{ from both sides} \\ 2y-\frac{1}{3}x+\frac{1}{3}x=12+\frac{1}{3}x \\ 2y=12+\frac{1}{3}x \\ \text{ Divide by 2 from both sides} \\ \frac{2y}{2}=\frac{12+\frac{1}{3}x}{2} \\ y=\frac{12}{2}+\frac{\frac{1}{3}}{2}x \\ y=6+\frac{\frac{1}{3}}{\frac{2}{1}}x \\ y=6+\frac{1\cdot1}{3\cdot2}x \\ y=6+\frac{1}{6}x \\ \text{ Reorder} \\ y=\frac{1}{6}x+6 \end{gathered}[/tex]• Fourth equation
[tex]\begin{gathered} 5x+3y=1 \\ \text{ Subtract 5x from both sides} \\ 5x+3y-5x=1-5x \\ 3y=1-5x \\ \text{ Divide by 3 from both sides} \\ \frac{3y}{3}=\frac{1-5x}{3} \\ y=\frac{1}{3}-\frac{5}{3}x \\ \text{ Reorder} \\ y=-\frac{5}{3}x+\frac{1}{3} \end{gathered}[/tex]Then, the lines have the following slopes:
• First
[tex]m=\frac{1}{6}[/tex]• Second
[tex]m=\frac{1}{2}[/tex]• Third
[tex]m=\frac{1}{6}[/tex]• Fourth
[tex]m=-\frac{5}{3}[/tex]As we can see, only the first and third lines have the same slope.
Therefore, only the first and third lines are parallel.