SOLUTION
Given the question in the question tab, the following are the solution steps to get the height of the triangle.
Step 1: Draw the triangle
Step 2: State the known parameters
[tex]\begin{gathered} \text{base}=\text{adjacent}=18 \\ height=\text{opposite}=x=\text{?} \\ \text{angle}=60^{\circ} \end{gathered}[/tex]Step 3: Write the formula for finding x
[tex]\tan x=\frac{\text{opposite}}{\text{adjacent}}[/tex]Step 4: Find the height of the triangle (x)
[tex]\begin{gathered} \tan 60=\frac{x}{18} \\ By\text{ cross multiplication}, \\ x=18\times tan60 \\ x=31.17691454 \\ x=31.177\text{ to 3 decimal places.} \end{gathered}[/tex]Hence, the height of the right angled triangle is 31.177 approximately to three decimal places