Given;
[tex]\begin{gathered} Principal(P)=76010.00 \\ rate(r)=2\frac{1}{5}\%=\frac{11}{5}\%=2.2\%=0.022 \end{gathered}[/tex]To Determine: The future value after 2 years if the compounded daily
Solution:
The future value of a compound interest is calculated using the formula
[tex]A=P(1+\frac{r}{n})^{nt}[/tex][tex]\begin{gathered} Where \\ A=Future\text{ value} \\ P=Principal(amount\text{ invested\rparen} \\ r=rate \\ n=365\text{ for daily compounds\rparen} \\ t=time\text{ in years} \end{gathered}[/tex]Substitute the given into the formula
[tex]\begin{gathered} A=76010(1+\frac{0.022}{365})^{365\times2} \\ A=76010(1+0.00006027397)^{730} \end{gathered}[/tex][tex]\begin{gathered} A=76010(1.00006027397)^{730} \\ A=79429.00 \end{gathered}[/tex]Hence, the future value is $79,429.00