Respuesta :

Solution:

a) Given the equation of line m below

[tex]y=\frac{2}{3}x-4[/tex]

Using a graphing tool, the graph of line m is shown below

The line is labeled m

b) A line, p, is parallel to line m and passes through point (3, 4)

The slope of parallel lines is equal.

Thus, the slope of line p is 2/3

To find the equation of line p, the formula is

[tex](y-y_1)=m(x-x_1)[/tex]

Substitute the coordinates and the slope into the formula above

[tex]\begin{gathered} (y-4)=\frac{2}{3}(x-3) \\ y-4=\frac{2}{3}x-2 \\ Collect\text{ like terms} \\ y=\frac{2}{3}x-2+4 \\ y=\frac{2}{3}x+2 \end{gathered}[/tex]

The graph of line p, is shown below

c) The equation of line p in slope-intercept form is

[tex]y=\frac{2}{3}+2[/tex]

d) Line s is perpendicular to line m,

To find the slope of a perpendicular line, the formula is

[tex]\begin{gathered} m_1\cdot m_2=-1 \\ Where \\ The\text{ slope of line }m,\text{ }m_1=\frac{2}{3} \\ The\text{ slope of line s is }m_2 \\ \frac{2}{3}\cdot m_2=-1 \\ m_2=-\frac{3}{2} \end{gathered}[/tex]

And line s passes through the point (0, -4),

The equation of line will be

[tex]\begin{gathered} (y-y_1)=m_2(x-x_1) \\ y-(-4)=-\frac{3}{2}(x-0) \\ y+4=-\frac{3}{2}x \\ Collect\text{ like terms} \\ y=-\frac{3}{2}x-4 \end{gathered}[/tex]

The graph of line s is shown below

e) The equation of line s in slope intercept form is

[tex]y=-\frac{3}{2}x-4[/tex]

f) To justify if line s is perpendicular to line p,

Using their slopes

[tex]\begin{gathered} Slope\text{ of line }s,\text{ }m_1=-\frac{3}{2} \\ Let\text{ }m_2\text{ be the slope of line p} \\ For\text{ perpendicular lines} \\ m_1\cdot m_2=-1 \\ -\frac{3}{2}\cdot m_2=-1 \\ \frac{-3m_2}{2}=-1 \\ -3m_2=-2 \\ m_2=\frac{-2}{-3}=\frac{2}{3} \\ The\text{ slope of }m_2=\frac{2}{3} \end{gathered}[/tex]

Hence, line s is perpendicular to line p

Ver imagen JoylynG357980
Ver imagen JoylynG357980
Ver imagen JoylynG357980