Each of the following expressions has a single numerical value for all θ where the expression is defined. Determine the numerical value of each expression and make sure to enter a single number.√36⋅cos^2(θ)+36⋅sin^2(θ)=7/sec^2(θ)−tan^2(θ)=(cos^2(θ)+sin^2(θ))(sec^2(θ)−tan^2(θ))=sin(θ)/csc(θ)+cos(θ)/sec(θ)=

Each of the following expressions has a single numerical value for all θ where the expression is defined Determine the numerical value of each expression and ma class=

Respuesta :

Part a

Remember that

[tex]\sin ^2(\theta)+\cos ^2(\theta)=1[/tex]

therefore

[tex]\begin{gathered} \sqrt[]{36\sin^2(\theta)+36\cos^2(\theta)} \\ \sqrt[]{36(\sin^2(\theta)+\cos^2(\theta))} \\ \sqrt[]{36} \\ 6 \end{gathered}[/tex]

Part b

Remember that

[tex]\begin{gathered} \tan ^2(\theta)+1=\sec ^2(\theta) \\ \end{gathered}[/tex]

substitute in the given expression

[tex]\begin{gathered} \frac{7}{\sec^2(\theta)-\tan^2(\rbrack\theta)} \\ \\ \frac{7}{\tan ^2(\theta)+1-\tan ^2(\theta)} \\ \\ \frac{7}{1}=7 \end{gathered}[/tex]

Part c

Substitute the given identities in part a and part b

we have

[tex](1)\cdot(1)=1[/tex]

Part d

Remember that

[tex]\csc (\theta)=\frac{1}{\sin (\theta)}[/tex][tex]\sec (\theta)=\frac{1}{\cos (\theta)}[/tex]

substitute in the given expression

[tex]\frac{\sin (\theta)}{(\frac{1}{\sin (\theta)})}+\frac{\cos (\theta)}{(\frac{1}{\cos (\theta)})}[/tex][tex]\sin ^2(\theta)+\cos ^2(\theta)=1[/tex]