Respuesta :

Given

[tex]2x^2-x-3=0[/tex]

How to factor

Solution

Step 1

Multiply the first and last costant

[tex]-3\times2x^2=-6x^2[/tex]

Step 2

Write out all the pair factors of -6x^2

[tex]\begin{gathered} -6x^2=-6x\text{ and x} \\ -6x^2=-x\text{ and 6x} \\ -6x^2=\text{ -3x and 2x} \\ -6x^2=\text{ -2x and 3x} \end{gathered}[/tex]

Step 3

Check for the pair, such that when you add you will get -x

[tex]\begin{gathered} it\text{ is } \\ -3x+2x=-x \\ \therefore-3x,\text{ 2x} \end{gathered}[/tex]

Step 4

Replace -x with -3x+2x in the equation

[tex]2x^2-3x+2x-3=0[/tex]

Step 5

Put them into brackets Since + is at the center no stress.

[tex](2x^2-3x)+(2x-3)=0[/tex]

Step 6

Factor out what is common in the bracket

[tex]x(2x^{}-3)+1(2x-3)=0[/tex]

Step 7

What is in the bracket are the same, pick one

[tex]\therefore(2x-3)(x+1)=0_{}[/tex]