Consider the following parametric equations:x = -3(t – 2) and y = -3tStep 1 of 2: Eliminate the parameter 1. Please write your answer in simplest form solved for y.

SOLUTION
Given the question in the image, the following are the solution steps to answer the question.
STEP 1: Write the given parametric equations
[tex]\begin{gathered} x=-3(t-2)---equation\text{ 1} \\ y=-3t------equation\text{ 2} \end{gathered}[/tex]STEP 2: Rewrite equation 1
[tex]\begin{gathered} x=-3t+6 \\ -3t+6=x \end{gathered}[/tex]STEP 3: Make t the subject of the equation
[tex]\begin{gathered} Subtract\text{ 6 from both sides} \\ -3t+6-6=x-6 \\ -3t=x-6 \\ Divide\text{ both sides by -3} \\ t=\frac{x-6}{-3} \\ t=\frac{-(x-6)}{3}=\frac{-x+6}{3} \end{gathered}[/tex]STEP 4: Substitute the value of t above into equation 2 and solve in terms of x
[tex]\begin{gathered} y=-3t \\ By\text{ substitution,} \\ y=-3(\frac{-x+6}{3}) \\ Cross-cancel\text{ the common factor: 3} \\ y=-(-x+6) \\ y=x-6 \end{gathered}[/tex]Hence, the answer in the simplest form solved for y is given as:
[tex]y=x-6[/tex]