option 1 drop down are: even-odd identity, quotient identity, Pythagorean identity, double-number identity.option 2 drop down are: combine like terms, even-odd identities, definition of subtraction, cofunction identity.option 3 drop down are: double-number identity, cofunction identity, Pythagorean identity, even-odd identity.

option 1 drop down are evenodd identity quotient identity Pythagorean identity doublenumber identityoption 2 drop down are combine like terms evenodd identities class=

Respuesta :

Answer:

The equation is given below as

[tex]\frac{\cos2x}{\cos x}=\cos x-\sin x\tan x[/tex]

Step 1:

We will work on the left-hand side, we will have

[tex]\begin{gathered} \cos x-\sin x\tan x \\ \text{recall that,} \\ Quoitent\text{ identity is} \\ \tan x=\frac{\sin x}{\cos x} \end{gathered}[/tex]

By substituting the identity above, we will have

[tex]\begin{gathered} \cos x-\sin x\tan x=\cos x-\frac{\sin x.\sin x}{\cos x}=\cos x-\frac{\sin^2x}{\cos x} \\ \end{gathered}[/tex]

Here, we will make use of the quotient identity

Step 2:

By writings an expression, we will have

[tex]\begin{gathered} \cos x-\sin x\tan x=\cos x-\frac{\sin x.\sin x}{\cos x} \\ \cos x-\sin x\tan x=\frac{\cos^2x-\sin^2x}{\cos x} \end{gathered}[/tex]

Here, we will use the definition of subtraction

[tex]\cos x-\frac{\sin^2x}{\cos x}[/tex]

Step 3:

We will apply the double number identity given below

[tex]\begin{gathered} \cos 2\theta=\cos (\theta+\theta)=\cos ^2\theta-\sin ^2\theta \\ \cos 2x=cos(x+x)=\cos ^2x-\sin ^2x \end{gathered}[/tex]

By applying this, we will have

[tex]\frac{\cos^2x-\sin^2x}{\cos x}=\frac{\cos2x}{\cos x}[/tex]

Here, we will use the double number identity

[tex]\frac{\cos^2x-\sin^2x}{\cos x}[/tex]