The number of homes sold each year by a realtor is normally distributed with a mean of 54. If the realtor sold 36 homes last year with a z-score of -2.4, what is the standard deviation? I

Respuesta :

Answer:

7.5

Explanation:

Given the following:

[tex]\begin{gathered} Z-\text{Score}=-2.4 \\ \text{Mean,}\mu=54 \\ X-\text{Value}=36 \end{gathered}[/tex]

Substitute these into the formula for Z-Score:

[tex]Z-\text{Score}=\frac{X-\mu}{\sigma}\text{ where }\sigma=\text{standard deviation}[/tex]

This gives:

[tex]\begin{gathered} -2.4=\frac{36-54}{\sigma} \\ -2.4=\frac{-18}{\sigma} \\ -2.4\sigma=-18 \\ \sigma=\frac{-18}{-2.4} \\ \sigma=7.5 \end{gathered}[/tex]

The standard deviation is 7.5