First, we need to find the number of moles, using the following formula:
[tex]pV=\text{nRT}\begin{cases}p=\text{pressure} \\ V=\text{volume} \\ n=\text{moles} \\ R=\text{constant of ideal gas law}=0.082\frac{L\cdot atm}{mol\cdot K} \\ \text{T=temperature}\end{cases},[/tex]We're going to clean "n" and replace the initial data which is 40.0 mL, 25 °C, and 1.5 atm. Remember that the volume must be in L (liters) and temperature in K (kelvin).
*To calculate the volume from mL to L, you just divided the number by 1000, and to calculate the temperature in kelvin, you must sum 273 to the normal temperature.
[tex]n=\frac{pV}{RT}=\frac{1.5atm\cdot0.4\text{ L}}{0.082\frac{L\cdot\text{atm}}{\text{mol}\cdot K}\cdot298\text{ K}}=0.0245\text{ mol},[/tex]Using this data, we're going to use the same formula with the final data which is 40.0mL (volume is constant), 100° C, and 0.025 mol using the correct units, clearing "P", like this:
[tex]p=\frac{nRT}{V}=\frac{0.0245mol\cdot0.082\frac{L\cdot atm}{mol\cdot K}\cdot373K}{0.4\text{ L}}=1.87\text{ atm.}[/tex]Then, the final pressure will be 1.87 atm.