Find the force (in N) of electrical attraction between a proton and an electron that are 6.4 ✕ 10−11 m apart. answer in:______NCompare this to the gravitational force between these particles. (Enter the gravitational force, in N.) answer in:_______N

Respuesta :

Given:

The distance between electron and proton is

[tex]r=6.4\times10^{-11}\text{ m}[/tex]

Required:

The Coulomb's force and gravitational force.

Explanation:

The Coulomb's force between electron and proton can be calculated by the formula

[tex]F_c=k\frac{|q_eq_p|}{r^2}[/tex]

Here, k is the constant whose value is

[tex]k\text{ = 9}\times10^9\text{ N m}^2\text{ /C}^2[/tex]

The charge of an electron is

[tex]q_{_e}=-1.6\times10^{-19\text{ }}C[/tex]

The charge of the proton is

[tex]q_p=\text{ 1.6}\times10^{-19}\text{ C}[/tex]

On substituting the values, Coulomb's force will be

[tex]\begin{gathered} F_c=\frac{9\times10^9\times1.6\times10^{-19}\times1.6\times10^{-19}}{(6.4\times10^{-11})^2} \\ =5.625\times10^{-8}\text{ N} \end{gathered}[/tex]

The gravitational force can be calculated by the formula

[tex]F_g=\frac{Gm_em_p}{r^2}[/tex]

Here, G is the universal gravitational constant whose value is

[tex]G\text{ = 6.67}\times10^{-11}\text{ N m}^2\text{ /kg}^2[/tex]

The mass of the electron is

[tex]m_e=9.1\times10^{-31}\text{ kg}[/tex]

The mass of the proton is

[tex]m_p=1.67\times10^{-27}\text{ kg}[/tex]

On substituting the values, the gravitational force will be

[tex]\begin{gathered} F_g=\frac{6.67\times10^{-11}\times9.1\times10^{-31}\times1.67\times10^{-27}}{(6.4\times10^{-11})^2} \\ =2.47\times10^{-47}\text{ N} \end{gathered}[/tex]

Final Answer: Coulomb's force is 5.625e-8 N

Gravitational force is 2.47e-47 N