Respuesta :

Answer:

The value of the expression is;

[tex]12[/tex]

Explanation:

Given the expression;

[tex]\frac{j^3k}{h^0}[/tex]

If;

[tex]\begin{gathered} j=-1 \\ h=8 \\ k=-12 \end{gathered}[/tex]

Substituting the values into the expression, we have;

[tex]\begin{gathered} \frac{j^3k}{h^0} \\ =\frac{(-1)^3(-12)}{8^0} \end{gathered}[/tex]

Any number raised to the power of zero is 1;

Solving the expression we have;

[tex]\begin{gathered} \frac{(-1)^3(-12)}{8^0} \\ =\frac{-1^{}(-12)}{1^{}} \\ =\frac{12}{1} \\ =12 \end{gathered}[/tex]

Therefore, the value of the expression is;

[tex]12[/tex]