Respuesta :
We must first find the moles corresponding to 81.7 grams of ethylene. To do this, we divide the grams by the molar mass of ethylene: 28.05g/mol.
[tex]\begin{gathered} molC_2H_4=givengC_2H_4\times\frac{1molC_2H_4}{MolarMass,gC_2H_4} \\ molC_2H_4=81.7gC_2H_4\times\frac{1molC_2H_4}{28.05gC_2H_4}=2.91molC_2H_4 \end{gathered}[/tex]Now, by stoichiometry, we see that the ratio of acetaldehyde to ethylene is 2/2. So, the moles of C2H4O will be:
[tex]\begin{gathered} molC_2H_4O=2.91molC_2H_4\times\frac{2molC_2H_4O}{2molC_2H_4} \\ molC_2H_4O=2.91molC_2H_4O \end{gathered}[/tex]Now, to find the grams of C2H4O we will need the molar mass of C2H4O. The molar mass of C2H4O is 44.05g/mol. The grams of C2H4O will be:
[tex]\begin{gathered} molC_2H_4O=givengC_2H_4O\times\frac{MolarMass,gC_2H_4O}{1molC_2H_4O} \\ molC_2H_4O=2.91gC_2H_4O\times\frac{44.05gC_2H_4O}{1molC_2H_4O}=128.3gC_2H_4O \end{gathered}[/tex]Answer: The grams of acetaldehyde that can be prepared are 128.3 grams