Respuesta :

[tex]R(x)=\frac{x+14}{x(x+20)}[/tex]

(a)

Since we can't divide by 0, we need to check the denominator in order to find the restrictions over the domain:

[tex]\begin{gathered} x(x+20)=0 \\ so: \\ x=0 \\ or \\ x=-20 \end{gathered}[/tex]

Therefore, the domain is:

[tex]\lbrace x|x\ne0_{\text{ }}and_{\text{ }}x\ne-20\rbrace[/tex]

Answer:

B

------------------------------

(b)

The vertical asymptotes are located at the restriction points. So, the vertical asymptotes are:

[tex]x=0,-20[/tex]

----------------------

(c)

Since:

[tex]\lim_{x\rightarrow\pm\infty}f(x)=\lim_{x\rightarrow\pm\infty}\frac{x+14}{x(20+x)}=0[/tex]

We can conclude that the horizontal asymptote is located at:

[tex]y=0[/tex]

(d)

Answer:

A

Ver imagen HadessahG540591