Respuesta :

EXPLANATION

Vertex:

The vertex of an up-down facing parabola of the form:

[tex]y=ax^2+bx+c[/tex]

is:

[tex]x_v=-\frac{b}{2a}[/tex]

Rewrite

[tex]y=6(x+3)^2-4[/tex]

in the form y=ax^2 +bx + c

Expanding:

[tex]y=6x^2+36x+50[/tex]

The parabola params are:

a=6, b=36, c=50

[tex]x_v=-\frac{b}{2a}[/tex][tex]x_v=-\frac{36}{2\cdot6}[/tex]

Simplify:

[tex]x_v=-3[/tex]

Plug in x_v = -3to find the y_v value

[tex]y_v=6(-3)^2+36(-3)+50[/tex][tex]y_v=-4[/tex]

Therefore the parabola vertex is (-3,-4)

a=6 so the vertex is a minimum.

Axis:

Parabola standard equation

4p(y-k) = (x-h)^2 is the standard equation for an up-down facing parabola with vertex at (h,k), and a focal length p

Rewrite y=6(x+3)^2-4 in the standard form:

Add 4 to both sides

y + 4 = 6(x+3)^2 -4+4

Refine

y+4 = 6(x+3)^2

Divide both sides by 6

[tex]\frac{y+4}{6}=\frac{6(x+3)^2}{6}[/tex]

Simplify

[tex]\frac{y}{6}+\frac{2}{3}=(x+3)^2_{}_{}[/tex]

Factor 1/6

[tex]\frac{1}{6}(y+\frac{\frac{2}{3}}{\frac{1}{6}})=(x+3)^2[/tex]

Simplify:

[tex]\frac{1}{6}(y+4)=(x+3)^2[/tex]

Factor 4:

[tex]4\cdot\frac{\frac{1}{6}}{4}(y+4)=(x+3)^2[/tex]

Simplify:

[tex]4\cdot\frac{1}{24}(y-(-4))=(x-(-3))^2[/tex]

Therefore parabola properties are:

[tex](h,k)=(-3,-4),\text{ p=1/24}[/tex]

Parabola is of the form 4p(y-k)=(x-h)^2 and is symmetric around the y-axis.

Axis of symmetry is a line parallel to the y-axis wich intersects the vertex:

x = -3